Филиал «ЦНИИ СЭТ» ФГУП «Крыловский государственный научный центр»

Введение в водородную энергетику и топливные элементы

Доклад заместителя главного конструктора направления водородной энергетики И.К. Ландграфа

Водородная энергетика как приоритетное научно-техническое направление развития энергетики

Понятие — «водородная энергетика» сформировалось в середине 70-х г. XX столетия. Водородную энергетику можно определить как научнотехническое направление, охватывающее проблемы получения, хранения, транспортировки и использования водорода. По мере развития этого направления становились все более очевидными экологические и энергоресурсосберегающие преимущества водородных технологий в различных областях экономики. Успехи в развитии ряда водородных технологий (в первую очередь, таких как топливные элементы и системы хранения и получения водорода) продемонстрировали, что использование водорода приводит к качественно новым показателям в работе установок и систем, а выполненные технико-экономические исследования показали, что хотя водород является вторичным энергоносителем, его применение во многих случаях экономически оправдано и эффективно.

Работы в области водородной энергетики в большинстве промышленно развитых стран относятся к приоритетным направлениям развития науки и техники и находят все большую финансовую поддержку как со стороны государства, так и со стороны частного капитала.

В этом плане Россия отличается от зарубежных промышленно развитых стран в худшую сторону. Если финансовая поддержка, инвестиции в развитие водородной энергетики со стороны государства ощущается, то активности в этом вопросе со стороны частного бизнеса незаметно. Широко разрекламированная в 2004 году «Норильским никелем» Комплексная программа «Водородная энергетика и топливные элементы», к сожалению, не дала сколько-нибудь значительного импульса к развитию водородной энергетики в России и в 2008 году была свернута.

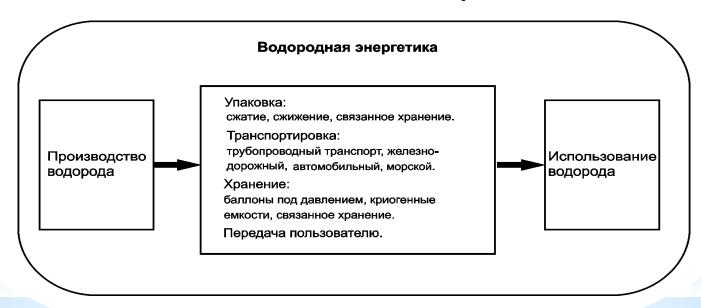
Следует отметить, что технологии водородной энергетики в большинстве стран Евросоюза, в США, Японии, а также в России, включены в перечень критических технологий, от уровня которых зависит безопасность страны.

Результаты разработок последних лет, обостряющиеся энергетические и экологические проблемы определяют основные направления развития нового рынка водородных технологий и использования водорода в качестве экологически чистого энергоносителя в ближайшей перспективе и общие для всех стран направления НИОКР.

В настоящее время уже сформировался и нашел широкое распространение термин «водородная экономика». Под этим понимается экономика, построенная путем полной замены углеводородного топлива, получаемого из невозобновляемых ископаемых источников энергии, водородным топливом, позволяющим уменьшить выброс парниковых газов в окружающую среду.

Наблюдаемое в мире в последние десятилетия резкое увеличение интереса к водороду как к горючему и энергоносителю определяется следующими его основными особенностями:

- во-первых, запасы водорода практически не ограничены;
- во-вторых, водород универсальный вид энергоресурса, он может использоваться в качестве горючего для производства электричества в рабочих циклах различного типа и в качестве энергоносителя для транспортировки в газообразном, жидком и связанном состояниях;
 - в-третьих, при помощи водорода возможна аккумуляция энергии;
- в-четвертых, среди прочих видов органического топлива водород отличается наибольшей теплотворной способностью на единицу массы и наименьшим отрицательным воздействием на окружающую среду.


Свойства водорода как горючего и энергоносителя

Показатель	Единицы измерения	Значение	
Температура точки кипения	К	20,39	
Плотность твердого водорода в тройной	кг/м ³	86,7	
Плотность жидкого водорода в тройной т	кг/м ³	77,0	
Плотность газообразного водорода при н условиях (давление 0,101325 МПа, темпер К)	кг/м ³	0,0893	
Удельная теплота сгорания на единицу	высшая	МДж/кг	142
массы	низшая	МДж/кг	120
Удельная теплота сгорания на единицу	высшая	М Дж/м³	12,8
объема	низшая	М Дж/м³	10,8

Водород имеется повсюду в мире, правда, в природе он не встречается в чистом виде. Его необходимо извлекать или из углеводорода, или из воды. Вместе с тем, запасы водорода, связанного в органическом веществе и в воде, практически неисчерпаемы. Энергосодержание 1 г водорода эквивалентно энергосодержанию около 3 г бензина. При использовании водорода в топливных элементах вследствие высокого КПД топливного элемента (в 1,5–3 раза больше, чем у двигателя внутреннего сгорания) эффективность водорода как топлива оказывается еще выше (примерно в 4–10 раз).

Вместе с тем, при переходе на водородное топливо неизбежно появление новых технических проблем, поскольку водород представляет собой искусственный энергоноситель, который должен быть получен из существующих в природе веществ. В водородной экономике водород, подобно любому другому коммерческому продукту, проходит несколько стадий между получением и использованием. После получения он должен быть упакован путем сжатия или сжижения, транспортирован наземными или морскими транспортными средствами и сохранен в системах хранения до передачи потребителю. Жизненный цикл водорода заканчивается после его полного использования потребителем.

Жизненный цикл водорода

Способы получения водорода

Водород может быть получен различными путями с использованием широкого диапазона технологий. Некоторые из них используют установившиеся промышленные процессы, тогда как другие находятся еще на лабораторной стадии. Способы производства водорода можно подразделить на: электрохимические, химические и физические, хотя последние следует скорее отнести ко второй стадии химического способа.

Интерес представляют уже апробированные технологии, а именно:

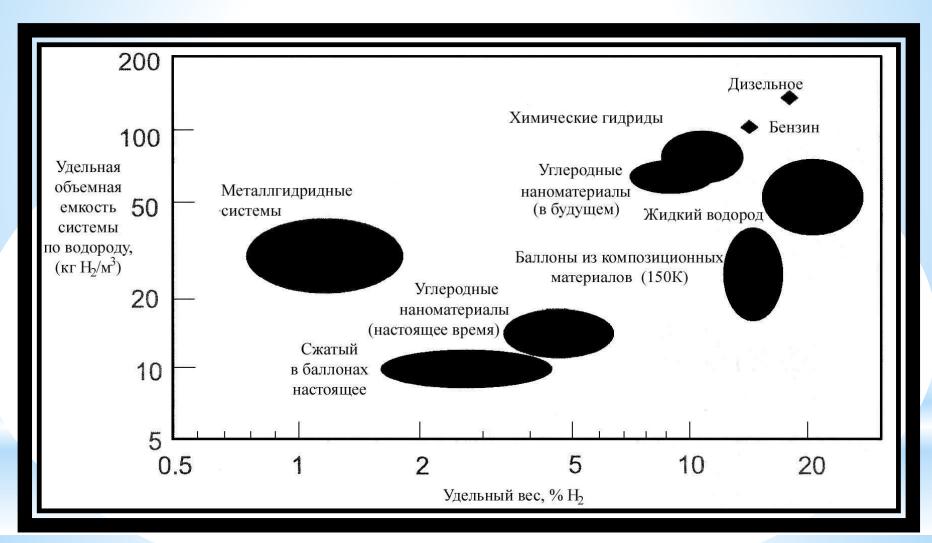
1. Получение водорода из углеводородных соединений - конверсия природного газа, метанола, дизельного топлива, бензина и пр.; газификация угля.

Самым оптимальным из них по затратам представляется способ, заключающийся в выделении водорода из природного газа с помощью пара

$$CH_4 + H_2O \leftrightarrow CO + 3H_2$$

 $CO + H_2O \leftrightarrow CO_2 + H_2$

- 2. Получение водорода из воды
- 2.1 Электролиз разложение воды с образованием газообразного водорода и кислорода при пропускании через воду электрического тока.
- 2.2 Разложение воды гидрореагирующими металлами алюминий, магний, железо


$$Mg + 2H_2O \rightarrow Mg(OH)_2 + H_2$$

3. Получение водорода из гидридов и боргидридов металлов

Наиболее практически приемлемый – боргидрид натрия, но исходный продукт и продукты реакции крайне токсичны

$$NaBH_4 + 2H_2O \rightarrow NaBO_2 + 4H_2$$

Водородоемкость различных систем получения и хранения водорода

Водород, произведенный из природного газа, обходится в несколько раз дешевле электролизного водорода. Поэтому основным способом получения водорода в России в настоящее время является метод каталитической конверсии природного газа с водяным паром.

В 80-х годах прошлого века общий объем производства водорода в СССР составлял около 3 млн т. в год, из них доля электролитического водорода составляла около 300 тыс. т, то есть около 10%. Подобная структура производства водорода сохранилась и в настоящее время.

Установка получения водорода конверсией природного газа

Установка получения водорода электролизом воды

Следует четко понимать, что практически все перечисленные выше технологии получения водорода могут быть реализованы:

1. В промышленных масштабах на централизованных производствах.

В этом случае необходима организация сложной инфраструктуры, включающей промежуточное хранение водорода на предприятии-производителе, развитый парк специального транспорта (автомобильный, железнодорожный) для доставки водорода потребителю, хранение водорода в местах использования.

2. Непосредственно вблизи расположения объекта использования – электроэнергетической установки.

В этом случае отпадает необходимость в промежуточном хранении и транспортировке водорода.

3. В составе самого объекта использования - электроэнергетической установки.

Наиболее экономически и энергетически привлекательный способ для нужд водородной энергетики.

Другие способы получения водорода:

- с использованием ядерной энергии;
- с использованием возобновляемых источников энергии, например, электролизом воды за счет энергии солнца, ветра, гидроэнергии;

- за счет переработки биомассы;
- как побочный продукт некоторых производств, например, при электрохимическом получении хлора.

Способы хранения и транспортировки водорода

Создание компактных, надежных и недорогих систем хранения и транспортировки водорода является одной из ключевых проблем развития водородной энергетики. Сложность этой задачи определяется тем, что в свободном состоянии водород — самый легкий и один из самых низкокипящих газов. Достаточно сказать, что в жидком и твердом состояниях водород более чем на порядок легче воды и на порядок легче бензина.

Наиболее известный способ хранения, а также транспортировки водорода – это газобаллонный в сжатом состоянии. По своим массогабаритным характеристикам и по взрывопожаробезопасности он не полностью удовлетворяет условиям эксплуатации в наземном транспорте и в морских условиях.


Взрывопожароопасным является и еще один известный вариант хранения и транспортировки водорода — в криогенном виде. Несмотря на то, что этот вариант хранения широко применяется в космической технике, он имеет существенные недостатки, не позволяющие применять этот способ в иных транспортных и тем более в стационарных энергоустановках.

Следует упомянуть еще один способ транспортировки водорода

трубопроводный

Филиал "ЦНИИ СЭТ" ФГУП "Крыловский гос. научный центр"

С точки зрения безопасности наиболее предпочтительный способ хранения и транспортировки водорода — связанное хранение. Это либо хранение в химически связанном виде (гидриды), либо хранение с использованием управляемых процессов сорбции—десорбции водорода некоторыми интерметаллидными соединениями.

Перспективность такого способа определяется следующими особенностями:

- накоплением водорода в составе гидридов, используемых как промежуточный продукт при транспортировке и хранении;
 - генерацией водорода непосредственно в месте его потребления;
- использованием принципа аккумулятора с возможностью многократной зарядки и разрядки без замены сорбентов;
- возможность практически неограниченного во времени бездренажного хранения водорода;
- относительно низкими давлением и температурой в процессе эксплуатации.

Относительными недостатками этого способа являются большая удельная масса системы хранения и относительно высокая стоимость.

Использование водорода с целью получения электроэнергии

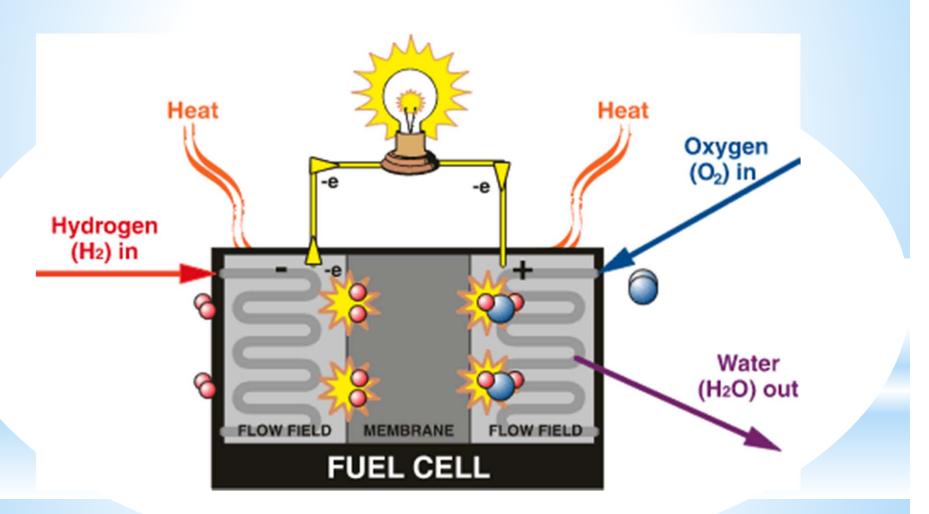
Наряду с технологией получения и хранения водорода другой важнейшей технологией водородной энергетики является технология топливных элементов и батарей топливных элементов.

Топливные элементы относятся к химическим источникам тока.

Топливный элемент - электрохимическое устройство, подобное гальваническому элементу, но отличающееся от него тем, что вещества для электрохимической реакции подаются в него извне - в отличие от ограниченного количества энергии, запасенного в гальваническом элементе или аккумуляторе.

Топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения.

Топливный элемент в результате высокоэффективного «холодного горения» топлива непосредственно вырабатывает электроэнергию.


Хотя открытие топливного элемента англичанином У. Гровом произошло сравнительно давно, в 1838 г., их интенсивное развитие началось всего несколько десятилетий тому назад, особенно после создания твердополимерного электролита.

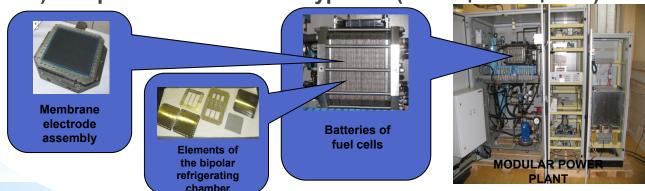
Топливные элементы являются ключевым звеном в энергоустановках, работающих на водородном топливе.

Принцип действия топливных элементов различных типов

Принцип действия топливного элемента с твердополимерным электролитом

Типы топливных элементов и их основные характеристики

	Тип	ТЭ с протонообменной мембраной (PEMFC)	Щелочные (AFC)	лочные (AFC) Фосфорнокислы е (PAFC)		Высокотемпературный твердооксидный электролит (SOFC)	
	Электролит	Протонообменная мембрана	30-50 % KOH	Концентрирован- ная фосфорная кислота	Расплавленный карбонатный электролит (Li ₂ C0 ₃ , K ₂ C0 ₃)	Ионопроводящая мембрана (YSZO)	
Ī	Температура, °С	50-80	60-90	160-220	600-700	800-1000	
	Топливо	Очищенный водород	Особочистый водород	Очищенный водород	Газовые смеси, содержащие Н ₂ и СО	Газовые смеси, содержащие Н₂ и СО	
	Окислитель	Кислород/воздух	Особочистый кислород	Воздух	Воздух	Воздух	
	Эффективность ТЭ, %	50-60	50-60	55	60-65	55-65	
	Изменение нагрузки	Быстрое	Быстрое	Медленное	-	Медленное	
	Готовность к действию	Немедленно	Быстрое	30 мин	Несколько часов	Несколько часов	
	Применение	Автономные источники электроэнергии, децентрализованная энергети-ка киловаттного и мегаваттного классов, транспортные применения	Возможно приме-нение на косми-ческих аппаратах и на транспорте (неэффективно)	Автономные источники электроэнергии, децентрализован -ная энергетика	класса, крупн электростанц электрическую и теп	ентрализованная энергетика мегаваттного класса, крупные центральные электростанции, производящие ктрическую и тепловую энергию, судовые и корабельные энергоустановки	
	Перспективы рас- ширения областей применения и доли рынка	Имеются	Отсутствуют	Прогноз неочевиден	· VIMANTCO		
	Уровень отечественных разработок	Стадия ОКР	Стадия ОКР	Научно- технический задел отсутствует 24	Научно-технический задел отсутствует	Стадия поисковых НИР	


От частного к общему

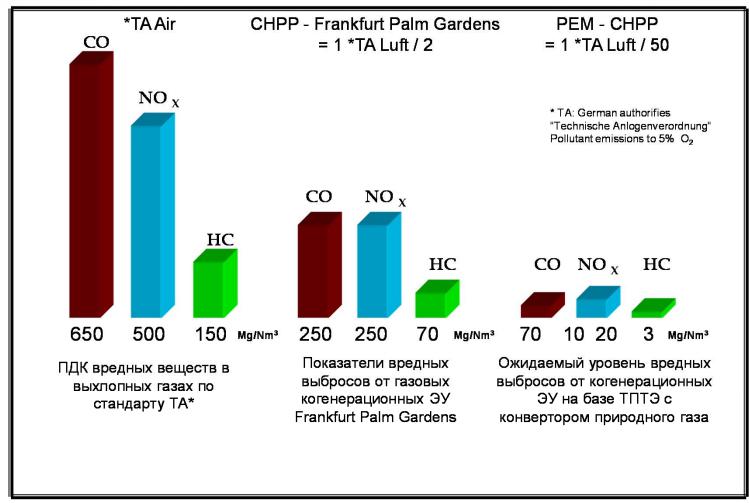
Топливные элементы не являются конечным рыночным продуктом, вопервых, мощность единичного ТЭ достаточна мала, во-вторых, ТЭ не могут функционировать без соответствующей инфраструктуры.

ТЭ конструктивно оформляются в батареи топливных элементов (БТЭ), которые представляют собой сборку параллельно-последовательно соединенных топливных элементов для набора напряжения, тока и мощности, оснащенную устройствами подачи топлива и окислителя, отвода продуктов реакции (вода) и теплоты.

Следующий уровень - электрохимический генератор (ЭХГ) – это энергоблок, состоящий из батарей топливных элементов, систем хранения и подачи топлива и окислителя, отвода продуктов реакции и теплоты.

Электрохимическая энергоустановка на топливных элементах (ЭУ с ТЭ) – это установка, предназначенная для выработки электрической энергии (и теплоты), включающая в себя ЭХГ, устройства для преобразования напряжения и тока (например, инвертор) и систему утилизации теплоты, генерируемой в ТЭ, например, для теплофикации (низкопотенциальная теплота) или получения электрической энергии (высокопотенциальная теплота) в паровой или газовой турбине (в концевом цикле).

Почему ЭУ с ТЭ?

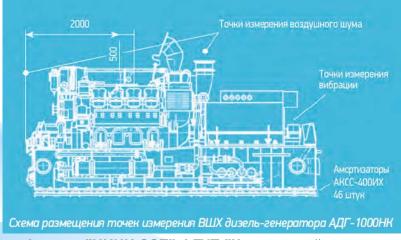

Актуальность широкого внедрения ЭУ с ТЭ в экономику связана, прежде всего, с истощением запасов топлива и ухудшением экологической ситуации.

В этом смысле энергетические установки на топливных элементах вне конкуренции. Их коэффициент полезного действия по электричеству может достигать 70% (комбинированные высокотемпературные ЭУ), а количество вредных выбросов на несколько порядков ниже, чем у энергоустановок машинного типа. Именно это явилось причиной и движущей силой интенсивного развития в последние годы водородной энергетики во всем мире.

Итак, основными преимуществами ЭУ с ТЭ по экономическим и потребительским качествам являются:

- значительно меньшие выбросы вредных веществ в окружающую среду;
- значительно меньшие показатели уровня шума и вибрации;
- эффективное использование топлива и высокий КПД;
- низкие затраты на эксплуатацию (не требуются замена масла, присутствие оператора);
- плавные вольтамперные характеристики, высокая маневренность и эффективность во всем диапазоне нагрузок.

Экология ЭУ с ТЭ



Сравнение характеристик ПДК вредных веществ (ВВ) в выхлопных газах по немецким стандартам *ТА и лучших показателей по ВВ, достигнутых в газопоршневых и газотурбинных двигателях ЭУ, а также ожидаемые уровни для топливных элементов с протонообменной мембраной (по материалам конференции Fuel cell, Lucerne/ switzeland).

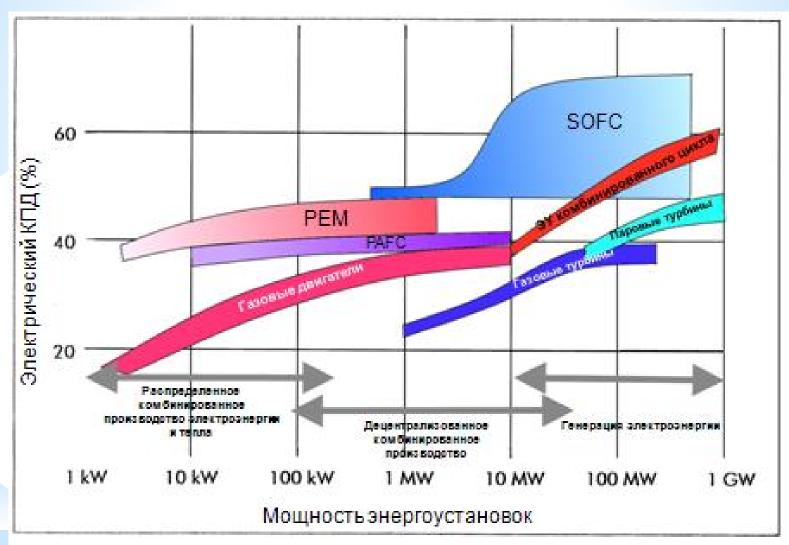
Эффективность, экология и ВШХ ЭУ с ТЭ

Энергоэффективность и экологические преимущества ЭУ с ЭХГ на базе ТПТЭ

Сравнительные характеристики	Достигнутый КПД по электроэнергии	Уровень звукового воздействия ЭУ, дБ	ПДК вредных веществ в отработавших газах, г/кВт·ч
ЭУ машинного тип (дизельные, турбинные)	a < 35 %	80 (Требования ВРД 39-1.13- 008-2000 для ЛСП)	По NOx - 11 - 29 По CO - 10 (Требования ВРД 39-1.13-008-2000 для ЛСП)
ЭУ с ТПТЭ типа «ГЭУ-Шельф»	- до 45 % ЭУ с ТПТЭ - до 70 % ЭУ с ТОТЭ	~ 50	По NOx - < 0,01 По CO - < 0,01

Филиал "ЦНИИ СЭТ" ФГУП "Крыловский гос. научный центр"

ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ГАЗПРОМ" ВЕДОМСТВЕННЫЙ РУКОВОДЯЩИЙ ДОКУМЕНТ


ТРЕБОВАНИЯ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРИ ЭКСПЛУАТАЦИИ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК МОРСКИХ НЕФТЕГАЗОДОБЫВАЮЩИХ ПЛАТФОРМ АРКТИЧЕСКОГО ШЕЛЬФА

ВРД 39-1.13-008-2000

Москва 2000

Система нормативных документов в газовой промышленности ВЕДОМСТВЕННЫЙ РУКОВОДЯЩИЙ ДОКУМЕНТ

Эффективность ЭУ с ТЭ
По материалам конференции «Fuel cell 2000», Швейцария (Люцерн)

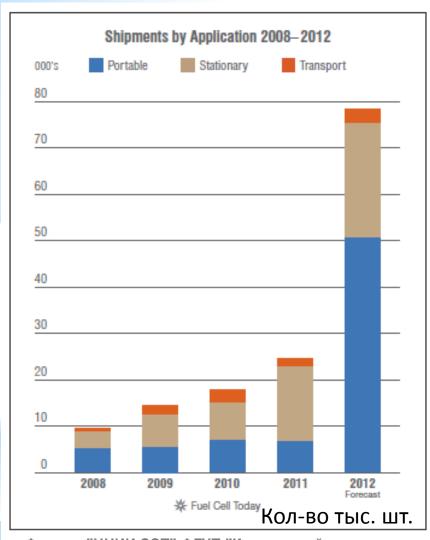
В развитых и развивающихся странах Европы, Азии и Америки действуют национальные программы развития водородной энергетики и началось внедрение ЭУ с ТЭ в различные отрасли хозяйства при поддержке государства. Так в Японии по национальной программе NEDO с 2005 года энергоустановок с ТЭ **установлено** более 2000 ДЛЯ использования, суммарная наработка которых составила 4,87 млн. кВт*ч. В США при поддержке государства только одной компанией UTC Power установлено 278 стационарных электростанций PureCell(TM) 200, которые наработали суммарно более 1 млрд. кВт*ч. Интенсивные исследования и опытные работы по созданию энергоустановок судового назначения с использованием топливных элементов ведутся в Финляндии, Норвегии и Швеции.

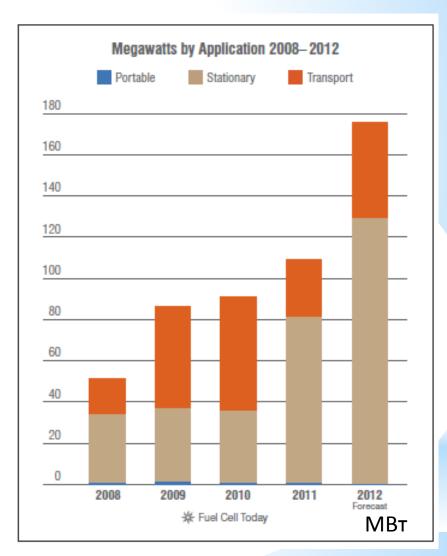
Для всего промышленно развитого мира водородная энергетика и ЭУ с ТЭ давно уже не экзотика, а одно из самых перспективных научно-технических направлений развития экономики и один из самых перспективных и желанных инновационных продуктов, стремительно завоевывающий рынки малой, рассредоточенной, автономной энергетики, уже нашедший применение в стационарной и транспортной энергетике, занимая обширную область от портативных источников тока мощностью в десятки и сотни ватт до достаточно крупных энергоустановок, мощность которых составляет несколько мегаватт.

Совершенно очевидно, что Россия должна войти в число разработчиков и поставщиков новой высокотехнологичной продукции, поскольку именно это предопределит путь инновационного развития отечественной энергетики.

Анализ статистических данных стационарных ЭУ с ТЭ различных производителей, находившихся в эксплуатации в мире в 2008 году по данным FUEL CELLS 2000 (http://www.fuelcells.org/)

	Кол-во ЭУ в эксплуатации, шт.	Кол-во ЭУ в эксплуатации, %	Максимальная мощность, кВт
Общее кол-во ЭУ	721	100,0	5000
PEM	346	47,9	250
AFC	2	0,3	12
SOFC	97	13,5	200
MCFC	83	11,6	1000
PAFC	178	24,7	5000
Другие	15	2,0	500


Анализ Fuel Cell Product List


поставщиков ЭУ на основе топливных элементов Северной Америки и Европы (по данным http://www.fuelcells.org/)

-	
L.T.	

Тип ТЭ	Наименование фирм- поставщиков	Страна дислокаци и фирмы	Количество единиц номенклатуры ЭУ с ТЭ	% от общего количества номенклатуры	В том числе, ЭУ для транспортных применений
	Ballard General Hydrogen Hydrogenics Ida Tech	Канада Канада Канада США	5 9 4 4		2 - Mark902, HD6 8 - Hydricity(R) Packs; F1-3000 F1-5000; F1-8000; F2; F3; F6; AGV
PEM	Jadoo Power Nuvera Fuel Cell Plug Power ReliOn Teledyne Energy Systems UTC Power	США США США США США	39 6 2 3 2 2	75,0	1 – HDL-82 1 - PureMotion™ 120 System
SOFC	Teledyne Energy Systems	США	1	1,9	
DMFC	MTI Micro Fuel Cell SFS Smart Fuel Cell Teledyne Energy Systems	США Германия США	2 3 1 } 6	11,6	
MCFC	FuelCell Energy	США	3	5,8	
PAFC	UTC Power	США	1	1,9	
AFC	Hydrogenics Teledyne Energy Systems	США США	1 (электролизер) 1 (электролизер)	3,8	
Итого			52	100,0	12

Динамика увеличения продукции на ТЭ с 2008 по 2012 г.г.

Филиал "ЦНИИ СЭТ" ФГУП "Крыловский гос. научный центр"

Ежегодные поставки продукции на рынок ТЭ с 2008 по 2012 г.г. в тыс. шт.

'000 Units	2008	2009	2010	2011	
Portable	5.1	5.7	6.8	6.9	
Stationary	3.6	6.7	8.3	16.1	
Transport	8.0	2.0	2.6	1.6	
Total	9.5	14.4	17.7	24.6	
Shipments by re	egion				
'000 Units	2008	2009	2010	2011	
Europe	3.3	4.4	4.8	3.9	
N America	1.7	3.2	3.3	3.3	
Asia	4.5	6.7	9.5	17.0	
RoW	0.0	0.1	0.1	0.4	
Total	9.5	14.4	17.7	24.6	
Shipments by fu	iel cell type				
'000 Units	2008	2009	2010	2011	
PEMFC	4.1	8.5	10.9	20.4	
DMFC	5.4	5.8	6.7	3.6	
PAFC	0.0	0.0	0.0	0.0	
SOFC	0.0	0.1	0.1	0.6	
MCFC	0.0	0.0	0.0	0.0	
AFC	0.0	0.0	0.0	0.0	

Ежегодные поставки продукции на рынок ТЭ с 2008 по 2012 г.г. в МВт

MW	2008	2009	2010	2011	2012
Portable	0.3	1.5	0.4	0.4	0.6
Stationary	33.2	35.4	35.0	81.4	128.4
Transport	17.6	49.6	55.8	27.6	46.8
Total	51.1	86.5	91.2	109.4	175.8
Megawatts by re	egion				
MW	2008	2009	2010	2011	2012
Europe	5.0	2.9	5.8	9.4	19.2
N America	23.0	37.6	42.5	59.6	67.4
Asia	22.8	45.3	42.5	39.6	87.3
RoW	0.3	0.7	0.4	0.8	1.9
Total	51.1	86.5	91.2	109.4	175.8
Megawatts by fo	uel cell type				
MW	2008	2009	2010	2011	2012
PEMFC	28.9	60.0	67.7	49.2	73.8
DMFC	0.3	1.1	1.1	0.4	0.5
PAFC	8.6	6.3	7.9	4.6	8.8
SOFC	1.3	1.1	6.7	10.6	19.5
MCFC	12.0	18.0	7.7	44.5	73.2
AFC	0.0	0.0	0.1	0.1	0.0
Total	51.1	86.5	91.2	109.4	175.8

Почему в России водородная энергетика развивается с отставанием от ведущих промышленно развитых стран?

Основные причины, препятствовавшие развитию в России в начале XXI века водородной энергетики и топливным элементам, состояли в следующем:

- отсутствие национальной программы по разработке и производству ТЭ и энергетических установок на их основе;
- отсутствие целевого государственного финансирования фундаментальных и прикладных исследований и разработок в области ТЭ;
- неразвитость и неготовность промышленной базы для производства ТЭ и энергетических установок на их базе;
- неготовность частного бизнеса по-настоящему субсидировать фундаментальные и прикладные исследования;
- отсутствие четкой и ясной государственной политики и реальной поддержки работ по экологически чистым ресурсо- и энергосберегающим технологиям.

Они были сформулированы руководством «Норильского Никеля» и к сожалению во многом актуальны и для сегодняшнего дня.

Области применения энергоустановок на топливных элементах

Области применения энергоустановок на топливных элементах

Области применения энергоустановок на топливных элементах

Судовые ЭУ на топливных элементах

Судно Plannet с ЭУ на основе ТПТЭ мощностью 160 кВт фирмы HDW-Fuel Cell Systems GmbH

Судовые ЭУ на топливных элементах

Опытное норвежское судно Viking Lady с ЭХГ мощностью 320 кВт.

LOVERS

Судно «Lovers» с ЭХГ на базе ТПТЭ (Голландия)

Судно «Elding» с ЭХГ на базе ТПТЭ (Исландия)

Фрагменты из презентации финской компании Wärtsilä 2010 г.

Фрагменты из презентации финской компании Wärtsilä 2010 г.

Автомобили на твердополимерных топливных элементах

В 2010 году началось оснащение лондонских такси моделью ТХ4 гибрид с ТПТЭ

В 2010 году в продажу поступили внедорожники Chevrolet Equinox Fuel Cell

Авиабаза ВВС США Hickam. В 2009 году здесь открылась водородная заправка для водородных автобусов.

Начался выпуск Mazda Premacy Hydrogen RE Hybrid

Производство Mercedes-Benz B-Class F-Cell начнется уже в этом году.

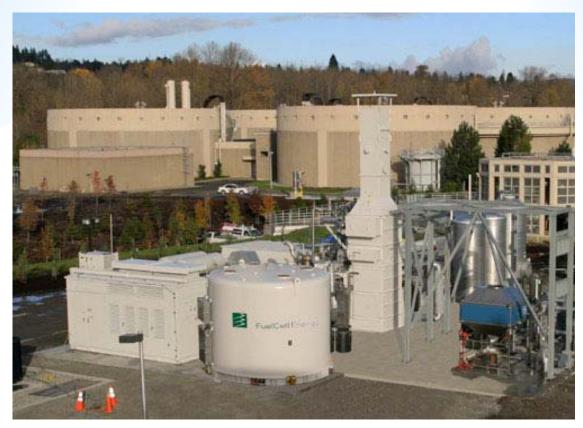
Авиация на топливных элементах

Компания AeroVironment (США), работающая с NASA в проекте Helios успешно испытала High-Altitude Long-Endurance Aircraft (HALE). Летательный аппарат на топливных элементах, работающих совместно с солнечными батареями, заправляется жидким водородом. Кислород забирается из атмосферы. Аппарат с размахом крыльев 16,5 м способен нести 450 кг груза и летать без посадки одну неделю.

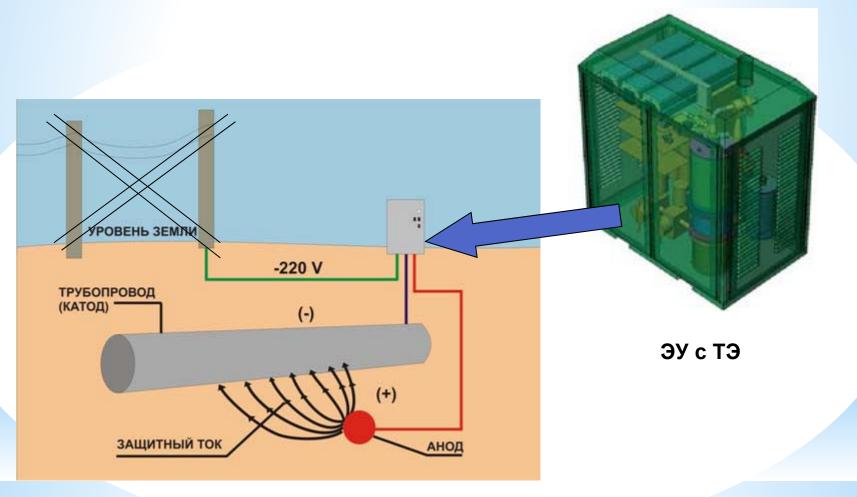
Железнодорожный транспорт на топливных элементах

Vehicle Projects (США) и Fuelcell Propulsion Institute. На локомотиве массой 109 тонн установлена ЭУ на топливных элементах мощностью 1 МВт.

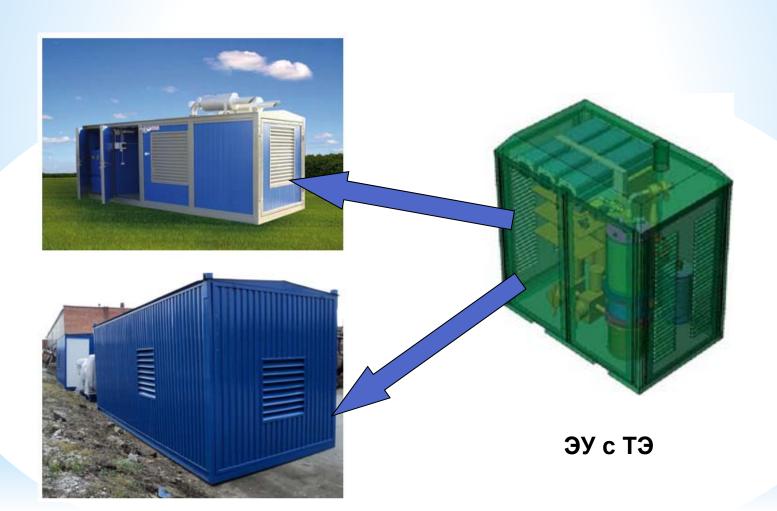
Стационарные энергоустановки на топливных элементах



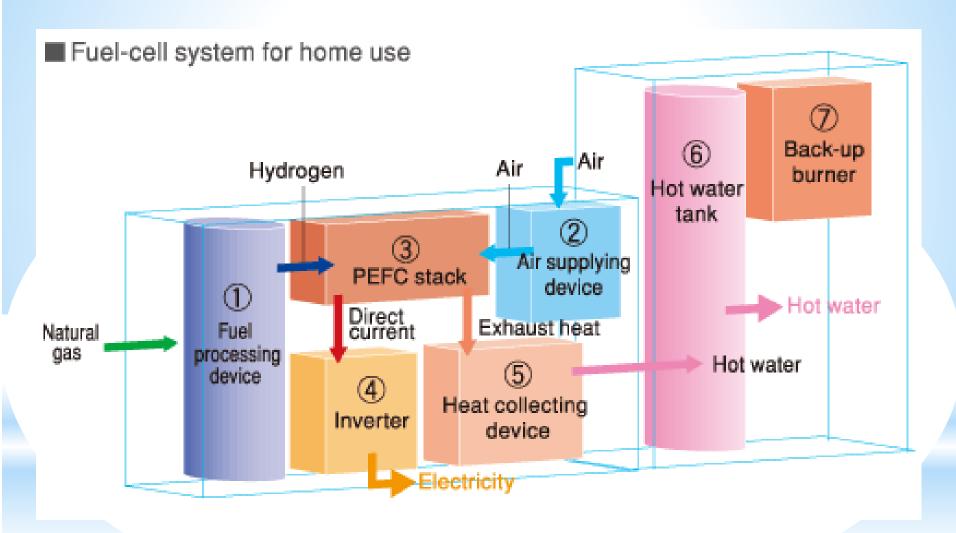
США, производственный цех Bloom Energy по выпуску 100 кВт ЭУ с ТЭ модель ES-5000 «Bloom Box», 2010 г.

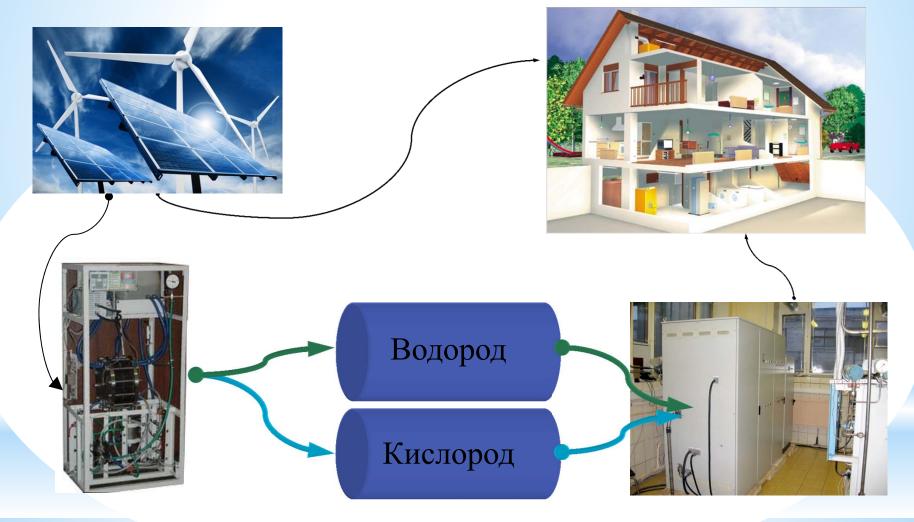

С февраля 2010 г. модель ES-5000 «Bloom Box» поступила в открытую продажу

Стационарные электростанции на топливных элементах



В 2006 году Fuel Cell Energy (NASDAQ: FCEL) продала 1 МВт электростанцию на топливных элементах компании Sharp. Электростанция установлена на фабрике по производству LCD телевизоров в Катеуата, префектура Мие. Годовые выбросы CO₂ сократились на 2300 тонн. Электростанция работает на сжиженном природном газе.


Источник электропитания для станций катодной защиты трубопроводов


Блочно-комплектные устройства электроснабжения объектов нефтегазовой промышленности

Топливные элементы для домашних применений

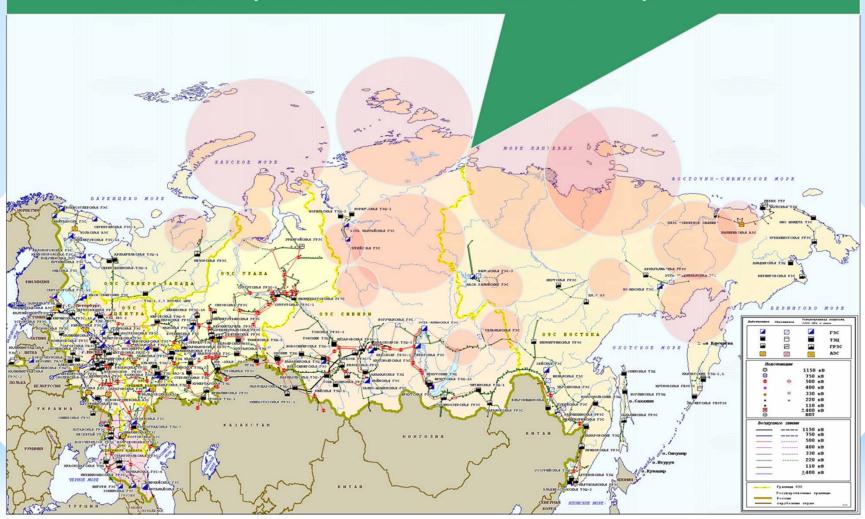
Солнечно-ветровая энергоустановка с системой получения и аккумулирования водорода и генерирования электроэнергии (СПАВГЭ)

Электролизер

ЭУ с ТЭ

Роль малой распределенной энергетики в развитии энергетической отрасли России

Будущее развития энергетической отрасли в России все чаще связывают с малой и альтернативной энергетикой. Необходимость перехода на автономные источники питания обусловлена развитием отечественной экономики, что вполне закономерно приводит к увеличению потребления электрической и тепловой энергии в промышленно развитых регионах России. Кроме того, есть необходимость в пересмотре устаревших программ энергетического обеспечения целого ряда регионов, в первую очередь, Крайнего севера, которые просто не имеют альтернативы малой энергетике, так как около 60% территории России не подключено к централизованной энергетической системе, при этом здесь проживает более 20% наших граждан.


Этим определяется потребность в высокоэффективных и экологически чистых эус ТЭ, работающих в непосредственной близости от жилья или производств.

Дефицит электрической и тепловой энергии в первую очередь затрагивает производство. Существующие мощности уже сегодня не справляются с растущими потребностями отдельных предприятий. Возрастающие тарифы на электроэнергию и тепло «ударяют по карману» не только владельцев предприятий, но и простых потребителей. Существует повышенная аварийность, так как большая часть энергооборудования устарела и требует замены. Подсчитано, что в условиях постоянного экономического роста и наращивания производственных мощностей необходимо наращивать существующие энергетические мощности минимум на 3% в год в то время, как в 2010 году введено около 2 тыс. МВт, что составляет менее 1%.

Путь преодоления энергетического кризиса специалисты видят в развитии малой распределенной энергетики (МРЭ). Проблема будет стоять не столь остро, если часть инфраструктуры районов и отдельные предприятия оснастить автономными энергоустановками, мини- и малыми электростанциями мощностью от 0,1 до 50 МВт. Децентрализованные формы обеспечения энергией поселков и малых городов, как составная часть МРЭ, вполне реальная перспектива в условиях назревшего энергетического кризиса и гарант защиты от перебоев в централизованной электросети.

ЭУ с ТЭ для малой рассредоточенной энергетики

Районы России не охваченные Единой Энергетической Системой. Здесь проживает более 20% населения страны

Мировая практика внедрения МРЭ и российский опыт

Мировая практика

Доля распределенной генерации в среднем в ЕС • В странах ЕС распределенная генерация составляет в среднем около 10% от общего объема производства электроэнергии (в Дании – 45%).

- В США эксплуатируется около 12 млн. установок малой распределенной генерации (единичной мощностью до 60 МВТ) общей установленной мощностью свыше 220 ГВт, а темпы прироста составляют порядка 5 ГВт в год.
- Основной тренд переход к использованию установок малой генерации в качестве регулярного источника резервной мощности, сокращение потребности во вводах крупной централизованной генерации в энергосистеме.

Доля распределенной энергетики в производстве электроэнергии в России чрезвычайно мала по сравнению с развитым странами

В 2011 году установленная мощность электростанций России составила 223,6 ГВт. Установленная мощность объектов малой распределенной генерации составила в зоне централизованного энергоснабжения 3,2 ГВт

Заключение

- 1. Энергоустановки на топливных элементах в России найдут самое широкое применение в большинстве отраслей экономики страны.
- 2. Отечественный рынок ЭУ с ТЭ практически неисчерпаем и уже на сегодняшний день его ожидаемая емкость составляет десятки миллиардов евро. Однако реальное наполнение российского рынка современной высокоэффективной инновационной отечественной продукцией возможно только при активной поддержке разработчиков изделий водородной энергетики и топливных элементов как со стороны государства, так и, что является необходимым условием, со стороны частного капитала уже на стадии НИОКР. В противном случае, российский рынок ЭУ с ТЭ будет в самое ближайшее время «оккупирован» зарубежными поставщиками.
- 3. Для стимулирования развития отечественных водородной энергетики и ЭУ с ТЭ, стимулирования негосударственных компаний к инвестированию в указанную область необходимо внесение соответствующих изменений в законодательство страны. Тут примером может быть законодательство США и стран ЕС.

Спасибо за внимание!