КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ УСТОЙЧИВОСТИ ИНТЕРФЕЙСОВ НА ОСНОВЕ НАНОПЛЕНОК НИТРИДА ГАЛЛИЯ

Цель работы - проведение компьютерного эксперимент по моделированию устойчивости наноструктурных гетеропереходов: политип 6H-SiC(0001) – GaN(0001),

политип 6H-SiC(000 1) – GaN(000 1);

рассчитать удельную энергию адгезии между нанопленкой нитрида галлия и подложкой карбида кремния.

Теоретическое введение

Тонкие пленки GaN получают по технологии гетероэпитаксиального роста с рассогласованием кристаллических решеток. К настоящему времени GaN выращивался на Al₂O₃ (сапфире), SiC (карбиде кремния), Si (111), GaAs (111), ZnO, LiAlO₂, LiGaO₂, MgAl₂O₄, ScAlMgO₄. Среди всех этих подложек чаще всего используют сапфир и карбид кремния вследствие их высокой термической и химической стабильности, плоской морфологии поверхности и доступности. Для выращивания гексагональной фазы GaN наилучшей подложкой с точки зрения близости параметров решетки и коэффициента термического расширения является SiC.

SiC – это широкозонный материал, который может кристаллизоваться как в виде кубической, так и в виде гексагональной структуры и проявляет политипизм. Наиболее часто встречаются гексагональные политипы 6Н и 4Н.

Для роста пленок GaN используют либо поверхность SiC (0001), пленки GaN в этом случае являются Ga-полярными, либо поверхность SiC(000 1) – пленки N-полярные.

Параметром устойчивости гетероперехода GaN – SiC является удельная энергия адгезии, характеризующая силу связи между нанопленкой GaN и подложки для выращивания нанопленки SiC.

Исследование устойчивости интерфейсов проводится методом наискорейшего спуска по поверхности потенциальной энергии связи (ППЭС) атомов нанопленки, в их конфигурационном пространстве.

Расчёт удельной энергии адгезии на связь между нанопленкой GaN и соответствующим контактным соединением ведут по следующей формуле:

$$E_{a\partial} = E_{o \delta u \mu} - E_{GaN} - E_{SiC} / N_{cs}$$
 ,

где $E_{o \delta u i}$ – общая энергия двух слоев, E_{GaN} – энергия, приходящаяся на слой нитрида галлия, E_{SiC} – энергия, приходящаяся на слой подложки, Nce – число связей между слоями.

Порядок выполнения работы:

1. Расчет параметров структуры GaN.

1) Запускаем программу *NanoEvolver*.

2) Загружаем структуру *File* \rightarrow *Load structure*... \rightarrow **GaN.hin**. При

загрузке структуры рабочее окно остается пустым.

При появления сообщения ошибке необходимо открыть данный файл с помощью программы Блокнот и

заменить все «,» на «.» (Правка \rightarrow Заменить \rightarrow Что, Чем. \rightarrow Закрыть \rightarrow Сохранить изменения) 3) View \rightarrow Graph...

В окне выбираем связь **N-Ga** и в поле *«exact value»* ставим радиус обрезания 4, нажимаем *«enter»* (в рабочем окне появляется граф). В поле *«maximum»* оставляем 10. Далее нажимаем *«ok»*.

4) $Edit \rightarrow Lock graph... \rightarrow Yes$ (сохранение полученного графа)

5) *Edit* \rightarrow *Set parameters*

В поле «*step*, a_0 » ставим 0,1, «*step count*» – 1000

Нажимаем «Load parameters», выбираем файл GaN.txt (предварительно заменив в нем запятые на точки)

6) $Edit \rightarrow Evolve$ (Оптимизация проводится 2-3 раза, пока не

перестанет изменяться общая энергия системы в появившемся окне)

7) Когда оптимизация будет завершена $File \rightarrow Save \ report \ as... \rightarrow GaN.htm$ (сохранение данных по энергии)

2. Расчет параметров структуры SiC.

1) Запускаем программу *NanoEvolver*.

2) Загружаем структуру *File* \rightarrow *Load structure*... \rightarrow **SiC.hin**. При

загрузке структуры рабочее окно остается пустым.

При появления сообщения ошибке необходимо открыть данный файл с помощью программы Блокнот и

заменить все «,» на «.» (Правка \rightarrow Заменить \rightarrow Что, Чем. \rightarrow Закрыть \rightarrow Сохранить изменения) 3) View \rightarrow Graph...

В окне выбираем связь C-Si и в поле «exact value» ставим радиус

обрезания 4, нажимаем «*enter*» (в рабочем окне появляется граф). В поле «*maximum*» оставляем 10. Далее нажимаем «*ok*».

4) $Edit \rightarrow Lock graph... \rightarrow Yes$ (сохранение полученного графа)

5) *Edit* \rightarrow *Set parameters*

В поле «step, a₀» ставим 0,1, «step count» – 1000

Нажимаем «Load parameters», выбираем файл

SiC.txt (предварительно заменив в нем запятые на точки)

6) $Edit \rightarrow Evolve$ (Оптимизация проводится 2-3 раза, пока не

перестанет изменяться общая энергия системы в появившемся окне)

7) Когда оптимизация будет завершена $File \rightarrow Save \ report \ as... \rightarrow SiC.htm$ (сохранение данных по энергии)

3. Расчет параметров структуры GaN+SiC (Si-N)

1) Запускаем программу *NanoEvolver*.

2) Загружаем структуру *File* \rightarrow *Load structure*... \rightarrow **GaN+SiC** (Si-N).hin.

При загрузке структуры рабочее окно остается пустым. При появления сообщения ошибке

необходимо открыть данный файл с помощью программы Блокнот и заменить все «,» на «.» (Правка →

Заменить \rightarrow Что, Чем. \rightarrow Закрыть \rightarrow Сохранить изменения)

3) *View* \rightarrow *Graph*...

В окне выбираем связь C-Si и в поле «exact value» ставим радиус

обрезания 4, нажимаем *«enter»* (в рабочем окне появляется граф). Тоже самое повторяем для связей **N-Ga** (радиус обрезания 4) и **N-Si** (радиус обрезания 6). В поле *«maximum»* оставляем 10. Далее нажимаем *«ok»*.

4) $Edit \rightarrow Lock graph... \rightarrow Yes$ (сохранение полученного графа)

5) *Edit* \rightarrow *Set parameters*

В поле «*step*, *a*₀» ставим 0,1, «*step count*» – 1000

Нажимаем «Load parameters», выбираем файл

CSi+NGa.txt (предварительно заменив в нем запятые на точки)

6) $Edit \rightarrow Evolve$ (Оптимизация проводится 2-3 раза, пока не

перестанет изменяться общая энергия системы в появившемся окне)

7) Когда оптимизация будет завершена *File* \rightarrow *Save report as*... \rightarrow **GaN+SiC** (Si-N).htm (сохранение данных по энергии)

4. Расчет параметров структуры GaN+SiC (Ga-C)

1) Запускаем программу *NanoEvolver*.

2) Загружаем структуру *File* \rightarrow *Load structure*... \rightarrow **GaN+SiC** (Ga-C).hin.

При загрузке структуры рабочее окно остается пустым. При появления сообщения ошибке

необходимо открыть данный файл с помощью программы Блокнот и заменить все «,» на «.» (Правка \rightarrow

Заменить \rightarrow Что, Чем. \rightarrow Закрыть \rightarrow Сохранить изменения)

3) *View* \rightarrow *Graph*...

В окне выбираем связь C-Si и в поле «exact value» ставим радиус

обрезания 4, нажимаем «*enter*» (в рабочем окне появляется граф). Тоже самое повторяем для связей **N-Ga** (радиус обрезания 4) и **C-Ga** (радиус обрезания 7). В поле «*maximum*» оставляем 10. Далее нажимаем «*ok*».

4) *Edit* \rightarrow *Lock graph*... \rightarrow *Yes* (сохранение полученного графа)

5) *Edit* \rightarrow *Set parameters*

В поле «*step*, a_0 » ставим 0,1, «*step count*» – 1000

Нажимаем «Load parameters», выбираем файл SiC+GaN.txt (предварительно заменив в нем запятые на точки)

6) *Edit* \rightarrow *Evolve* (Оптимизация проводится 2-3 раза до тех пор, пока не перестанет изменяться общая энергия системы в появившемся окне)

7) Когда оптимизация будет завершена $File \rightarrow Save \ report \ as... \rightarrow GaN+SiC \ (Ga-C).htm$ (сохранение данных по энергии)

Рекомендации по оформлению отчета.

Название работы

Цель работы:

Заполните таблицу

Моделируемая структура	Изображение	Величина полной энергии связей

На основании отчетов программы рассчитываем удельную энергию адгезии по формуле:

$$E_{\textit{ad}} = E_{\textit{obuy}} - E_{\textit{GaN}} - E_{\textit{SiC}} / N_{\textit{cs}}$$

В случае первой структуры *Ncв* соответствует числу Si-N связей, в случае второй структуры – числу Ga-C связей.

Сравните полученные энергии и сделайте выводы.